Source attribution of submicron organic aerosols during wintertime inversions by advanced factor analysis of aerosol mass spectra.

نویسندگان

  • Valentin A Lanz
  • M Rami Alfarra
  • Urs Baltensperger
  • Brigitte Buchmann
  • Christoph Hueglin
  • Sönke Szidat
  • Miriam N Wehrli
  • Lukas Wacker
  • Silke Weimer
  • Alexandre Caseiro
  • Hans Puxbaum
  • Andre S H Prevot
چکیده

Real-time measurements of submicrometer aerosol were performed using an Aerodyne aerosol mass spectrometer (AMS) during three weeks at an urban background site in Zurich (Switzerland) in January 2006. A hybrid receptor model which incorporates a priori known source composition was applied to the AMS highly time-resolved organic aerosol mass spectra. Three sources and components of submicrometer organic aerosols were identified: the major component was oxygenated organic aerosol (OOA), mostly representing secondary organic aerosol and accounting on average for 52-57% of the particulate organic mass. Radiocarbon (14C) measurements of organic carbon (OC) indicated that approximately 31 and approximately 69% of OOA originated from fossil and nonfossil sources, respectively. OOA estimates were strongly correlated with measured particulate ammonium. Particles from wood combustion (35-40%) and 3-13% traffic-related hydrocarbon-like organic aerosol (HOA) accounted for the other half of measured organic matter (OM). Emission ratios of modeled HOA to measured nitrogen oxides (NOx) and OM from wood burning to levoglucosan from filter analyses were found to be consistent with literature values.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Submicron aerosol source apportionment of wintertime pollution in Paris, France by double positive matrix factorization (PMF) using an aerosol chemical speciation monitor (ACSM) and a multi-wavelength Aethalometer

Online non-refractory submicron aerosol mass spectrometer (AMS) measurements in urban areas have successfully allowed the apportionment of specific sources and/or physical and chemical properties of the organic fraction. However, in order to be fully representative of PM pollution, a comprehensive source apportionment analysis is needed by taking into account all major components of submicron a...

متن کامل

Atmospheric submicron aerosol composition and particulate organic nitrate formation in a boreal forestland–urban mixed region

The Puijo aerosol–cloud observation station is a unique measurement site for its location in the mixed region between the boreal forestland and the municipality of Kuopio, Finland. A measurement campaign was carried out at the station during fall 2010. An Aerodyne high-resolution timeof-flight aerosol mass spectrometer (HR-Tof-AMS) was deployed to characterize the atmospheric submicron aerosols...

متن کامل

Source apportionment of submicron organic aerosols at an urban site by factor analytical modelling of aerosol mass spectra

Submicron ambient aerosol was characterized in summer 2005 at an urban background site in Zurich, Switzerland, during a three-week measurement campaign. Highly time-resolved samples of non-refractory aerosol components were analyzed with an Aerodyne aerosol mass spectrometer (AMS). Positive matrix factorization (PMF) was used for the first time for aerosol mass spectra to identify the main comp...

متن کامل

Mass spectral characterization of submicron biogenic organic particles in the Amazon Basin

[1] Submicron atmospheric particles in the Amazon Basin were characterized by a high-resolution aerosol mass spectrometer during the wet season of 2008. Patterns in the mass spectra closely resembled those of secondary-organicaerosol (SOA) particles formed in environmental chambers from biogenic precursor gases. In contrast, mass spectral indicators of primary biological aerosol particles (PBAP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Environmental science & technology

دوره 42 1  شماره 

صفحات  -

تاریخ انتشار 2008